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A B S T R A C T   

Posidonia australis is a slow-growing seagrass that forms extensive meadows in sheltered coastal locations which 
are often popular areas for recreational boating. Traditional block-and-chain boat moorings can directly impact 
P. australis meadows, with the action of heavy chains eroding the seafloor and creating bare sand scars that 
fragment meadows. The installation of new environmentally friendly moorings (EFMs) can reduce damage to 
seagrasses, but natural re-establishment by P. australis to scars can be very slow. Given the endangered status of 
this species in New South Wales, Australia, we developed an innovative restoration procedure to re-establish P. 
australis transplants within old scars without damaging existing meadows. Naturally-detached rhizome fragments 
were collected from the shore by citizen-scientists, stored within aquaculture tanks and then planted underwater. 
We planted a total of 863 fragments into six mooring scars at three different times. Survival of fragments after 
one year was significantly greater for those planted in June (54%) than in January (31%). The planting tech
niques (with or without natural fibre mats to stabilize sediments) and environmental conditions (surrounding 
habitat, depth and presence of the EFM) did not influence survival. Many surviving fragments (36.3%) had 
produced new shoots during the year. Our results show that naturally-detached seagrass fragments can be used to 
effectively restore P. australis meadows. This is an important new approach for supplying propagules for resto
ration without damaging remaining populations of an endangered seagrass, and presents a compelling man
agement approach that engages local communities and enhances conservation efforts.   

1. Introduction 

Human impacts have caused extensive habitat and biodiversity los
ses worldwide, reducing the benefits that people receive from nature 
and threatening the quality of life of future generations (Díaz et al., 
2019). Habitat restoration is an increasingly important management 
tool to counter and reverse these losses and, in the last few decades, 
restoration efforts have greatly accelerated (McDonald and Williams, 
2009; McLeod et al., 2018; Waltham et al., 2020). Habitat restoration is 
often used for the conservation of threatened plant species (Volis, 2016; 

Zimmer et al., 2020). In marine habitats, restoration of key vegetated 
habitats such as seagrass meadows and kelp forests, is quickly gaining 
traction as an important management tool (McLeod et al., 2018; Wood 
et al., 2019). 

Seagrasses are marine flowering plants that underpin one of the most 
productive coastal ecosystems in the world (Larkum et al., 2006). Many 
of the large, persistent species significantly modify their environment, 
transforming relatively featureless soft sediments into structurally 
complex and diverse habitats that support a wide variety of fauna. Some 
faunal species are permanently associated with seagrasses habitats while 
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others use seagrasses only as nursery areas (Duffy, 2006; Heck et al., 
2003; Jackson et al., 2001; Lilley and Unsworth, 2014). More recently, 
seagrass meadows are heralded as globally important sites for carbon 
sequestration (Mcleod et al., 2011). Seagrasses are among the most 
threatened ecosystems in the world and their rate of decline (7% yr− 1 

since 1990) is comparable to that of coral reefs (Waycott et al., 2009). 
The cause of their decline varies, but is largely linked to human activ
ities. Climate change, coastal development, degraded water quality and 
boating activities are among the main causes for seagrass declines (Orth 
et al., 2006). The coastal embayments that are the preferred locations for 
seagrasses are also popular areas for recreational boating, and boating 
activities represent a global threat to seagrass cover (Glasby and West, 
2018; Sagerman et al., 2020; Serrano et al., 2016; Unsworth et al., 
2017). 

Mitigation approaches such as restoration are becoming an impor
tant tool for revegetating damaged seagrass meadows. Seagrass resto
ration techniques were first developed in the 1940s, and recent efforts 
are increasingly providing encouraging results (Tan et al., 2020). Before 
starting any restoration, it is essential that the threats to seagrass sur
vival are addressed (van Katwijk et al., 2016). Following this, most 
seagrass restoration involves destructive techniques to source donor 
material from existing meadows, such as collecting seagrass cores (or 
‘plugs’) or rhizomes with shoots (also defined as ‘runners’, ‘sprigs’, 
‘shoots’) from existing meadows (Ganassin and Gibbs, 2008; Sanchez- 
Lizaso et al., 2009; Statton et al., 2012; Tan et al., 2020). Restoration 
methods using seeds are also proving useful for larger scale restoration 
projects in some species (Orth et al., 2012; Sinclair et al., 2021). 
Micropropagation has also showed encouraging results in terrestrial 
plants but difficulties have been encountered in seagrasses (Ailstock and 
Shafer, 2006). Following planting, inadequate anchorage of fragments is 
one of the major causes of seagrass transplant failure (Bastyan and 
Cambridge, 2008). Site selection is also very important, with depth and 
sediment stability influencing success (Aoki et al., 2020; Meehan and 
West, 2000; Pirrotta et al., 2015; van Katwijk et al., 2009). Destabilized 
sediments can prevent natural recolonization and limit survival of 
transplanted fragments. Biodegradable anchoring material is showing 
promising results (Ward et al., 2020) and the deployment of organic 
mats, such as those made of jute (also called hessian or burlap) that 
stabilize the sediment can, in some instances, promote survival of 
transplanted fragments (Campbell and Paling, 2003; Paling et al., 2009; 
Piazzi et al., 2021; Temmink et al., 2020). The timing of replanting ef
forts is also important, with seasonal patterns in seagrass growth also 
likely to affect transplant performance (Alcoverro et al., 1995). 

Posidonia australis Hook.f. is an endemic seagrass in the southern half 
of Australia, widely distributed in subtidal temperate marine or estua
rine waters (Larkum et al., 2006). The largest meadows of P. australis are 
found on soft sediment environments, in sheltered estuaries and marine 
dominated coastal lakes (Creese et al., 2009). Like other seagrass spe
cies, P. australis meadows act as a nursery habitat for economically 
important fish and crabs (Beck et al., 2001; Burchmore et al., 1984; 
Middleton et al., 1984). 

Due to ongoing impacts and historical declines in areal extent (Butler 
and Jernakoff, 1999; Larkum and West, 1990), populations of P. australis 
in some estuaries in New South Wales (Australia) were listed as en
dangered under state legislation in 2012 and as threatened ecological 
communities under national legislation in 2015 (EPBC Act). Since the 
1980s, there have been ongoing declines in aerial extent of P. australis in 
three NSW estuaries (West & Glasby, in review), plus more recent de
clines in area of individual meadows at numerous locations (Evans et al., 
2018). 

One of the ongoing causes for loss of P. australis in NSW estuaries is 
the impact from traditional block and chain swing moorings (Glasby and 
West, 2018). These moorings are composed of a large concrete block 
connected to a heavy chain that drags along the seafloor as the boat 
swings due to shifting wind and tides, directly removing seagrass shoots 
and rhizomes (Fig. A1c, d) (Demers et al., 2013). Swing moorings create 

bare patches or scars that destabilize the sediment and change hydro
dynamic conditions. Scars will eventually widen and join together, 
resulting in fragmented meadows and over time in meadow loss. 
Alternative mooring designs – environmentally friendly moorings 
(EFMs) – that efficiently reduce damage to sensitive seagrass habitats 
now exist and are being trialled as replacements for swing moorings in 
some NSW embayments (Fig. A1e) (Demers et al., 2013). Re-establish
ment of bare areas and recovery of damaged P. australis meadows can be 
slow in NSW, as they typically depend on vegetative growth. There is 
little to no viable seed production in this region of Australia (Larkum 
et al., 2006). Damaged meadows in many cases are unlikely to re- 
establish naturally after major disturbance (Meehan and West, 2000). 
Re-planting is thus an appropriate technique to re-establish P. australis 
and speed up the recovery process. 

In New South Wales, the options for obtaining material to restore P. 
australis are limited due to the low seed production (Larkum et al., 2006) 
and the protected and declining status of seagrass meadows that could 
provide donor material. Here, we present and test an alternative option 
for restoration: the collection of naturally-detached P. australis frag
ments that have washed ashore among other vegetation debris (i.e. 
wrack). Fragments consist of at least one shoot attached to the rhizome 
(Fig. 4) and, once replanted, each can potentially produce new shoots 
and roots to spread over bare sand (Campbell, 2003). This method has 
been used successfully in the Mediterranean Sea, where the tidal range is 
microtidal (Balestri et al., 2011; Piazzi et al., 2021; Ward et al., 2020). 
No studies to date have examined this technique in areas with a higher 
tidal range, where fragments vary in the time taken to reach the shore 
(depending on the intensity and direction of the waves and winds) and 
are potentially exposed to longer periods in air once beached. 

We present a novel approach that aims to improve the availability of 
fragments for P. australis restoration by engaging citizen-scientists to 
help collect naturally-detached fragments washed ashore. Citizen sci
ence is rapidly becoming a widely established new approach for sup
porting research that also creates awareness and inspires environmental 
stewardship (Bonney et al., 2009; Cooper et al., 2007; Merenlender 
et al., 2016; Silvertown, 2009). “Citizen science” is already being used 
successfully to monitor seagrass (e.g. Seagrass-Watch, SeagrassSpotter). 
Given that seagrass restoration is laborious and time demanding 
(Bayraktarov et al., 2016), there is great potential for public involve
ment to enhance restoration efforts. 

Specifically, we test (a) whether naturally-detached fragments of P. 
australis collected from wrack and re-planted can survive and re- 
establish, (b) whether citizen scientists can collect enough fragments 
to support the restoration efforts, and (c) how the use of stabilizing 
natural fibre mats (hereafter jute mats), planting season, sedimentation 
rate, and scar characteristics (depth, surrounding habitat, presence of 
EFM) influence survival of restored fragments. 

2. Materials and methods 

2.1. Study site 

The study area was Port Stephens, a natural embayment in New 
South Wales, eastern Australia (32◦ 43′ 03.7′′ S 152◦ 10′ 41.2′′ E) and 
part of the Port Stephens Great Lakes Marine Park (Fig. A1a). This es
tuary is permanently open to the ocean with a tidal range of ~1.9 m and 
has extensive seagrass meadows (14.392 km2) (Fig. A1a). The 846 block 
and chain moorings installed within those meadows have caused an 
estimated loss of 30,556 m2 of P. australis habitat (Creese et al., 2009; 
Glasby and West, 2018) (Fig. A1c, d). Restoration of scars was conducted 
in Shoal Bay, a protected area on the southern shore of Port Stephens 
(Fig. A1a). Shoal Bay is close to the entrance of the estuary and exposed 
to waves from the northeast, typically during summer, and protected 
from eastern and southeastern directions during the rest of the year 
(Short and Trenaman, 1992; Vila-Concejo et al., 2007). 
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2.2. “Operation Posidonia”: a citizen-science project for fragment 
collection 

In 2018, we created and launched a citizen science project called 
‘Operation Posidonia’ (Sinclair et al., 2021) to engage local communities 
in the collection of naturally detached P. australis fragments washed up 
on the beach after storms, strong winds and high tides. This involved 
liaising with multiple local community groups such as the ‘Ocean and 
Coastal Care Initiatives (OCCI)’, ‘Salamander Bay Community’ and 
‘Shoal Bay Community’. Two short films (‘Look After Your Bottom’ and 
‘How Operation Posidonia works’) were produced to explain the envi
ronmental problem and the methods of restoration. Social media pages 
(Facebook, Instagram and Twitter) were used to share recommendations 
for the best weather conditions for P. australis collection. We organized 
guided seagrass “Walk and Talk” meetings with local groups and high 
schools (Fig. 4), and advertised the project in local news media to engage 
more citizen scientists. 

Citizen scientists collected fragments along the shore and deposited 
them at collection stations, where fragments were submerged in 
seawater. Fragments were then planted in commercially-available 
building sand (80 mm deep) in individual Coreflute® boxes within 
large outdoor tanks at the Port Stephens Fisheries Institute with flow- 
through estuarine water (salinity >28 ppt) (Fig. 4). Boxes floated near 
the surface of the water so that the sediment was 350 mm below the 
water. This type of sediment and method of storage were optimised after 
a range of pilot studies (Glasby, unpublished data). Each box had a 
numeric tag that identified the date fragments were collected. Frag
ments were individually tagged and the initial number of shoots was 
recorded to monitor the collection and survival of fragments over time. 
The day before replanting in the field, fragments were carefully removed 
from the sediment by fully opening the (flat pack) Coreflute® boxes in a 
shallow saltwater bath and wafting away the sediments to expose the 
roots. 

2.3. Replanting P. australis fragments in mooring scars 

The fragments were planted in two types of old boat mooring scars in 
Shoal Bay: (i) scars where block and chain moorings had been removed 
(bare scars) or (ii) scars where an EFM had been recently installed. EFMs 
consisted of an anchor weight, a rope and short chain, with the latter two 
sections kept off the substratum by a tough and flexible rubber shock 
chord, so that no elements were scarring the seafloor (Fig. A1e). We 
replanted P. australis fragments in two bare scars in January 2019 and 
two in June 2019. In November 2019, restoration took place in two EFM 
scars. 

In January and June six restoration plots (each 1 × 1.5 m) were 
established in each scar, three with stabilizing mats made of natural 
biodegradable fibre (jute mesh) and three without (Fig. 1a, b). In 
November we set up a total of eight plots in one EFM scar (four with jute 
mats/four without) and a total of four plots in the other EFM scar (two 
with jute mats/two without) due to differences in total scar size. 
Restoration plots were established at least 1 m away from the EFM. Each 
plot had a total of 24 fragments, planted by SCUBA-divers into bare sand 
at ~20 cm spacing and distributed in four rows of six fragments each 
(Fig. 1e). We gently excavated the sediment and secured the fragments 
with an anchoring technique appropriate for the growth-form of each 
fragment (Ward et al., 2020): either 150 mm long starch-based pegs 
(GreenStake™) with biodegradable budding tape (Ryset Australia) for 
orthotropic rhizomes (Fig. 1c) or 150 mm long metal Weed Mat Pins 
(Whites Outdoor) for plagiotropic rhizomes. For the June and November 
planting events, we used 200 mm long bamboo pegs instead of the metal 
pins (Fig. 1d). 

2.4. Environmental characteristics of replanting sites 

We included two environmental characteristics of each site 

(surrounding habitat and depth) as predictors of survival, both recorded 
on site by SCUBA-divers. In Shoal Bay we had (i) scars among natural P. 
australis and (ii) scars among other seagrasses. The dominant seagrass in 
the study site is P. australis, with scattered areas of Zostera muelleri subsp. 
capriconi and Zostera nigricaulis and smaller amounts of Halophila spp. 
Depth varied from 2 to 6 m. 

Sedimentation within the scars was quantified throughout the study 
as Port Stephens has highly variable sedimentation patterns, and Shoal 
Bay is particularly influenced by erosion (Austin et al., 2018; Vila- 
Concejo et al., 2007). In each scar, measures of sedimentation were 
made on two plots for each planting method (with/without jute mat), 
hereinafter referred as sedimentation plots (Fig. 1e). Changes in sedi
mentation were measured using the depth of disturbance (DOD) rod 
method (Vila-Concejo et al., 2014). DODs have been mostly used in 
intertidal zones, but recent tests have shown that they are a reliable tool 
in subtidal sites (Potouroglou et al., 2017; Vila-Concejo et al., 2014). 
DODs can give measurements of both sediment erosion and accumula
tion. We used maximum erosion as it is the most stable measurement 
and more appropriate for Shoal Bay (more details in Supplementary 
material). 

2.5. Survival and growth of replanted fragments 

Each restoration plot was monitored by SCUBA divers every 2 to 4 
months to assess fragment survival. Individual fragments were recorded 
as ‘alive’ or ‘not alive’ (either dead or lost) and the individual tag of ‘not 
alive’ fragments were removed. Restoration plots planted in January 
and June were monitored for fragment survival over 12 months, while 
plots from November were monitored over 8 months. In addition, 
growth of the fragments planted in January and in June was recorded by 
the change in the number of shoots of each fragment over time. 

2.6. Statistical analyses 

We used generalised linear mixed models (GLMMs) to test the in
fluence of our predictor variables on survival as a binomial response 
variable. We used five models to analyse the data: for survival data after 
7 to 8 months for the January, June and November plantings, model A 
included maximum erosion, and model B excluded maximum erosion as 
a variable; similarly, for survival data after 12 months for the January 
and June plantings, models C and D either included or excluded 
maximum erosion as a variable, respectively; model E was used to test if 
the presence of jute mats was having an effect on growth after 12 
months. Separate models were used for plots with and without erosion 
data because maximum erosion was only measured on some of the plots. 
Model A compared fragment survival in bare and EFM scars with the 
following fixed factors (levels in parenthesis): ‘type of scar’ (bare and 
EFM), ‘depth’ (2, 4 and 6 m), ‘surrounding habitat’ (P. australis and other 
seagrasses), ‘planting treatment’ (jute and no jute), ‘maximum erosion’ 
and ‘Plot number’ as a random factor. Model B included the same var
iables in Model A except ‘maximum erosion’. Models C and D had a 
similar design (except having ‘planting month’ instead of ‘type of scar’) 
and they were applied to survival after 12 months. We fit our GLMMs 
using the glmmTMB function in the glmmTMB package (Magnusson 
et al., 2017). Hypothesis tests between full and reduced models were 
used to calculate p-values. Statistical analyses and graphs were per
formed using the software R (version 4.0.2; R Core Team 2020) and 
relied heavily on the tidyverse workflow (Wickham et al., 2019) and 
ggplot2 (Wickham, 2016). 

3. Results 

3.1. Fragment collections by citizen scientists 

About 1000 P. australis fragments were collected by citizen scientists 
between September 2018 and November 2019. The numbers collected 
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Fig. 1. The technique of replanting Posidonia australis fragments. Example of a plot with (a) and without (b) a jute mat to stabilize sediments; a SCUBA-diver securing 
a fragment with a starch-made pin (c) and a bamboo peg (d), in the yellow circles; (e) experimental design: bare scar with six restoration plots (three DODs per 
restoration plot). Close up: example of a restored plot. Control sites in bare scars and natural meadow of P. australis were set up for sedimentation measurements 
(DODs). DOD stands for depth of disturbance rod. Photos: Giulia Ferretto (a, b), Harriet Spark (c) and Richard Woodgett (d). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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varied among months of the year (Fig. 2). Condition of fragments 
collected was variable, but the fragments that survived after being 
stored in tanks (between 2 weeks to 7 months) were those replanted. 
Collections of P. australis fragments generally increased after outreach 
events organized by the ‘Operation Posidonia’ team, such as engage
ment through social media and meetings/walks with community 
members and local schools (Fig. 2). Collections increased particularly 
during summer school holidays (December and January) and after 
autumn storms (April and May) (Fig. 2). The months with highest visits 
on the website overlapped with highest views on the Facebook page and 
generally corresponded with periods of the greatest fragment collection 
(Fig. 2). 

3.2. Survival and growth of replanted fragments 

We planted a total of 863 fragments of Posidonia: 285 in January, 287 
in June and 291 in November. The overall survival of P. australis frag
ments after 7 to 8 months was 52% (± 3.9%) (Fig. 3a), with no differ
ence detected between bare scars or those with an EFM (p = 0.85). The 
presence of other seagrasses as a surrounding habitat increased survival 
(p < 0.05) after 7 to 8 months, while the presence of jute mats did not 
influence survival (p = 0.2). Fragments at deeper sites had reduced 
survival (p < 0.05) (Model B). 

Average survival after 12 months was higher for the fragments 
planted in June (54% ± 3.9%) than those planted in January (31% ±
4.2%) (p < 0.01) (Fig. 3a). P. australis survival after 12 months was not 
influenced by either the surrounding habitat, the planting treatment or 
depth (p > 0.05) (Model D). 

Mortality was highest in the first three months, especially for frag
ments planted in January (Fig. 3a). The number of shoots of the sur
viving fragments initially declined but increased 150–200 days after 
planting, meaning fragments were producing new shoots (Fig. 3b). 
Numerous surviving fragments planted in January (35.5%) and in June 
(37.2%) had produced at least one new shoot throughout the year. 
Growth was not related to planting treatment (bare or jute mats) (p =

0.16). 
Erosion did not have an effect on survival after 8 months (p = 0.83) 

or after 12 months (p = 0.97) (Model A and C, respectively), and this 
result was consistent for plots with and without jute mats. 

4. Discussion 

We show that naturally-detached fragments of P. australis collected 
from the beach by citizen-scientists can successfully be maintained in 
tanks and replanted into old mooring scars to revegetate fragmented 
seagrass meadows. The use of rhizome and shoot fragments in restora
tion of Posidonia spp. is common both in the Mediterranean (Procaccini 
and Piazzi, 2001) and Australia (Bastyan and Cambridge, 2008; Tan 
et al., 2020) but this study extends that research to naturally-detached 
wrack from beaches, reducing the need for harvesting plants from 
donor meadows. This represents a significant advantage, especially 
where a seagrass species is listed as threatened or near threatened. 
Overall survival was higher for fragments planted in winter than those 
planted in summer, and survival was not dependent on using jute mats 
to stabilize sediments or the presence of an environmentally friendly 
mooring within the restoration scar. This indicates that the combination 
of improved mooring designs and seagrass restoration using naturally- 
detached fragments can be a valuable solution to restore fragmented 
meadows. 

Storms, strong winds and boating activities often result in the 
detachment of parts of marine plants and algae that are then transported 
by winds and tides and deposited as wrack on shores. Wrack is a natural 
phenomenon that can become a coastal problem unless it is properly 
managed (Macreadie et al., 2017; Misson et al., 2020). We show that 
wrack can contribute to the recovery of seagrass meadows if washed up 
fragments with rhizomes are actively collected before they dry and 
housed in appropriate conditions prior to replanting. A similar approach 
using naturally detached seagrass fragments for restoration has previ
ously been used in the Mediterranean (Balestri et al., 2011; Piazzi et al., 
2021; Ward et al., 2020). Our study shows that this approach can also be 

Fig. 2. ‘Operation Posidonia’ fragment collection from September 2018 until November 2019. Green triangles represent the months with highest views on Operation 
Posidonia Facebook page and website. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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effective in environments with a greater tidal range (up to 2 m) such as 
are found in southeastern Australia, where shoots could be exposed to 
air longer once beached. 

Our findings demonstrate that substantial amounts of donor material 
can be collected by citizen-scientists through community engagement 
efforts, extending contribution of citizen-science from monitoring pur
poses (e.g. Seagrass-Watch and SeagrassSpotter) to restoration. Citizen- 
scientists that frequent local shores can be easily trained to recognize the 
seagrass fragments suitable for restoration. In Port Stephens, the con
tributions from citizen-scientists greatly enhanced the success of the 
project. When conditions were favourable (strong northerly winds pre
ceding an outgoing tide, in our sites), a one-hour beach walk could 
collect as many as 30 viable fragments. The collection effort varied over 
time, but the presence of an organizer of ‘Operation Posidonia’ on site 
was the best way to facilitate consistent collections. When this was not 

possible, we organized talks and events regularly (every 2–3 months) to 
keep the local community engaged. Having a collaboration with local 
schools that organize semi regular fieldtrips as part of science class can 
also be a good solution. 

Keeping fragments in tanks prior to planting was an efficient way to 
naturally select those that were most viable for restoration (non-viable 
fragments would die during storage) and enabled us to build up a 
stockpile of material that could be used for replanting in large batches 
over multiple days. Without stockpiling fragments, replanting would 
have had to occur soon after fragment collection, which was not logis
tically possible and would likely have resulted in some non-viable 
fragments being planted. Unlike Posidonia oceanica (Balestri et al., 
2011), fragments of P. australis could not survive floating in water for 
long periods without being planted. This floating storage method was 
trialled at the beginning of the project (summer 2018–2019) and 

Fig. 3. Survival (a) and growth (b) of fragments over time. Only surviving fragments were included in the plot (b). Fragments planted in January (blue), June (red) 
and November (yellow). Fragments planted with jute mats (circle) and without jute mats (triangle). Data are represented in mean per plot, error bars represent 
standard error (± SE). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. How Posidonia australis fragments are collected for restoration. (1) Example of a P. australis fragment suitable for restoration washed up on the shore; (2) 
Seagrass Walk & Talk, one of the community engagement efforts ‘Operation Posidonia’ held in Port Stephens; (3) Some Coreflute® boxes where seagrass fragments 
were stored before being replanted underwater; (4) A SCUBA-diver replanting a P. australis fragment. 

G. Ferretto et al.                                                                                                                                                                                                                                



Biological Conservation 262 (2021) 109308

7

resulted in the greening of roots (exposure to light) and the burning of 
leaves (exposure to high temperatures). 

Many seagrass restoration studies have failed due to planting in 
unsuitable habitats, often because of sediment movement (Irving et al., 
2010; Meehan and West, 2002; Paling et al., 2009; Van Keulen et al., 
2003) or because the factors causing the seagrass decline were not 
completely solved (van Katwijk et al., 2009). Lack of an adequate 
anchoring system for replanted fragments is also a common reason for 
restoration failure (Bastyan and Cambridge, 2008). Emerging tech
niques such as the use of hessian bags (Irving et al., 2010), trait-based 
mimic structures (Temmink et al., 2020) and mats (Piazzi et al., 2021; 
Seddon, 2004) have had good success over much longer time periods 
(Tan et al., 2020). In our study, the coarse weave jute mats did not affect 
fragment survival and growth, however in highly exposed environments 
the use of mats improves seagrass transplant survival (Piazzi et al., 
2021). Erosion in the scars with EFMs was higher than in natural P. 
australis meadow but this did not affect overall survival, probably 
because the presence of jute mats was compensating for the higher level 
of erosion. 

Transplant survival varied among seasons and sites, confirming that 
time of planting and site selection can be crucial (Meehan and West, 
2002; van Katwijk et al., 2009). Fragments planted in winter (June) had 
higher survival after 12 months than those planted in summer 
(January). Transplant mortality during the first few months is usually 
the highest (Balestri et al., 2011; Meinesz et al., 1991; Sanchez-Lizaso 
et al., 2009). Posidonia spp. usually have higher biomass growth in 
summer when light availability is at maximum levels. Posidonia spp. 
during this season are more vulnerable, as this is the season when they 
accumulate energy reserves (Meinesz et al., 1991; Wittmann and Ott, 
1982). The high temperature of summer could have been responsible for 
stressing the fragments both during collection and handling prior to 
planting, causing greater mortality. Storms are common between April 
and September on the New South Wales coast (Harley et al., 2010; 
McLean and Hinwood, 1999) and the study site was hit by a large storm 
three months after January planting (in April 2019). Transplants may 
not have had time to anchor securely in sediments by this time, which 
may have also contributed to the lower survival of fragments planted in 
January compared to the other two planting times. Surprisingly, the 
presence of other seagrasses as a surrounding environment of the 
mooring scar was related to higher survival after 8 months but not at 12 
months, which suggests positive interactions among seagrass species 
may be more important during the early stages of fragment re- 
establishment (Valdez et al., 2020). Restoration at shallower depths is 
sometimes more successful, this could be because seagrasses, by 
receiving more light at a lower depth, grow faster and establish more 
quickly. 

Seagrass restoration success is currently highly variable (Irving et al., 
2010; Meehan and West, 2002; Statton et al., 2018). Encouragingly, the 
overall survival levels recorded in this study are comparable or higher to 
those harvesting transplants from natural meadows (Ganassin and 
Gibbs, 2008). These positive results need to be considered with some 
caution, nevertheless, given that the overall monitoring period for this 
study was relatively short (maximum one year) and previous studies on 
Posidonia spp. show that one year monitoring may not be sufficient to 
detect a long-term success (Pirrotta et al., 2015). Ongoing studies with P. 
australis, however, show that the greatest loss of transplants typically 
occurs in the first 3–6 months and survival can be >90% thereafter, 
although can be site specific (Statton et al., 2020). The replanting/ 
attachment method used here was trialled at a relatively exposed site in 
Botany Bay, NSW (using P. australis rhizomes collected from a meadow) 
and has had long-term success, with numbers of shoots almost doubling 
over 8 years (Glasby, unpublished data). Restored areas are expected to 
take >5 years to achieve shoot densities similar to natural undisturbed 
meadows, depending of course on the initial planting density (Statton 
et al., 2020). Other than one small trial using transplants of laboratory- 
reared seedlings (Glasby et al., 2014), previous P. australis restoration 

projects in NSW have primarily relied on harvesting the plants from 
healthy meadows (Ganassin and Gibbs, 2008; Seddon, 2004). In our 
study, most surviving fragments started growing new shoots around 5–6 
months after planting, meaning that they recovered from any collection 
and planting stress within a few months and started spreading in the 
surrounding environment. As sexual reproduction in P. australis 
meadows in NSW is not as common as other parts of Australia (Larkum 
et al., 2006), it is encouraging to see evidence of clonal reproduction 
from replanted fragments. 

We demonstrate that healthy seagrass fragments collected from the 
beach, when replanted in suitable conditions, have the capacity to 
establish and start expanding into nearby areas after only a few months. 
Naturally-detached fragments thus represent a promising donor source 
for Posidonia restoration efforts that does not involve any damage to 
existing meadows. By engaging citizen scientists for seagrass fragment 
collection, we demonstrate that this is a successful method to increase 
the amount of donor material, reduce costs of restoration and inform the 
public about marine conservation. This method therefore helps optimise 
current restoration techniques, as advocated for the current “UN Decade 
on Ecosystem Restoration” (Waltham et al., 2020). As seagrass collec
tion, handling and planting methodologies have developed over the past 
two decades, there is a growing number of success stories worldwide and 
within Australia. The challenge now is to scale-up restoration projects by 
ensuring resources are available to enhance communication and co- 
ordination among stakeholders, including industry partners, local 
Indigenous Ranger groups and environmental organizations. Thus, 
knowledge obtained by this study was also shared with councils, policy 
makers and general public in form of guidelines to increase knowledge 
exchange (Blignaut et al., 2013). 
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